问题标题:
在三角形ABC中.cosB等于负十三分之五.cosC等于五分之四.求三角形ABC的面积BC绝对值等于2
问题描述:
在三角形ABC中.cosB等于负十三分之五.cosC等于五分之四.求三角形ABC的面积
BC绝对值等于2
倪乐波回答:
cosB等于负十三分之五,那么sinB=12/13cosC等于五分之四,那么sinC=3/5cosA=cos[180°-(B+C)]=-cos(B+C)=-cosBcosC+sinBsinC=-(-5/13)×4/5+12/13×3/5=20/65+36/65=56/65sinA=33/65∴根据正弦定理:BC/sinA=AC/sinB2/...
点击显示
数学推荐
热门数学推荐