问题标题:
【在△ABC中,BD、CE为角平分线,P为ED上任意一点.过P分别作AC、AB、BC的垂线,M、N、Q为垂足.求证:PM+PN=PQ.】
问题描述:
在△ABC中,BD、CE为角平分线,P为ED上任意一点.过P分别作AC、AB、BC的垂线,M、N、Q为垂足.求证:PM+PN=PQ.
李书印回答:
证明:如图,过点P作AB的平行线交BD于F,过点F作BC的平行线分别交PQ、AC于K、G,连PG
∵BD平分∠ABC
∴点F到AB、BC两边距离相等
∴KQ=PN
∵EPPD
点击显示
其它推荐
热门其它推荐