问题标题:
初中几何证明题三角形ABC中角C=90度CD为中线过D作DG垂直AB交角C的平分线CE的延长线G求证DG=CD手机党传不了图
问题描述:
初中几何证明题
三角形ABC中角C=90度CD为中线过D作DG垂直AB交角C的平分线CE的延长线G求证DG=CD
手机党传不了图
刘希远回答:
过点G作GM⊥AC于点M,DN⊥BC于CB的延长线于点N,连接GA,GB∵DG是AB的垂直平分线∴GA=GB∵CG是∠ACB的角平分线∴GM=GN∴RT△AMG≌RT△BNG∴∠AGM=∠BGN∴∠AGM+∠MGB=∠BGN+∠MGB=∠MGN=90°即∠AGB=90°∴△AGB是等腰...
点击显示
其它推荐