问题标题:
【数学的题关于数列的题先给25答完还能给15已知f(x)=(x-1)^2,g(x)=10(x-1),数列{An}满足A1=2,(An+1-An)g(An)+f(An)=0,Bn=0.9(n+2)(An-1)求证:1.数列{An-1}是等比数列.2.若t^m/b^m<t^(m+1)/b^(m+1)对任意m∈N^*恒成立,求实】
问题描述:
数学的题关于数列的题先给25答完还能给15
已知f(x)=(x-1)^2,g(x)=10(x-1),数列{An}满足A1=2,(An+1-An)g(An)+f(An)=0,Bn=0.9(n+2)(An-1)
求证:1.数列{An-1}是等比数列.
2.若t^m/b^m<t^(m+1)/b^(m+1)对任意m∈N^*恒成立,求实数t的取值范围.
曲志昱回答:
1:证明:(An+1-An)g(An)+f(An)=0(An+1-An)*10(An-1)+(An-1)^2=0得An-1=-10(An+1-An)(An-An-1)*10(An-1-1)+(An-1-1)^2=0得An-1-1=-10(An-An-1)有:(An-1)/(An-1-1)=(An+1-An)/(An-An-1)化简:(An-1)^2=...
点击显示
数学推荐
热门数学推荐