字典翻译 问答 高中 数学 关于大学数学——代数与几何中的问题“如果把F^n的元素(a1,a2,...,an)看成是n维几何向量(即以(e1,e2,...,en)为基的向量的坐标),那么F^n又可以看成通常的几何向量空间R^n”,如果F为复数域,F^n
问题标题:
关于大学数学——代数与几何中的问题“如果把F^n的元素(a1,a2,...,an)看成是n维几何向量(即以(e1,e2,...,en)为基的向量的坐标),那么F^n又可以看成通常的几何向量空间R^n”,如果F为复数域,F^n
问题描述:

关于大学数学——代数与几何中的问题

“如果把F^n的元素(a1,a2,...,an)看成是n维几何向量(即以(e1,e2,...,en)为基的向量的坐标),那么F^n又可以看成通常的几何向量空间R^n”,如果F为复数域,F^n中的向量坐标ai都是复数,但R^n中向量坐标都是实数,怎么对应呢

这句话在73页

孟祥宇回答:
  “如果把F^n的元素(a1,a2,...,an)看成是n维几何向量(即以(e1,e2,...,en)为基的向量的坐标),那么F^n又可以看成通常的几何向量空间R^n”,如果F为复数域,F^n中的向量坐标ai都是复数,但R^n中向量坐标都是实数,怎么对...
点击显示
数学推荐
热门数学推荐
  • 语文
  • 数学
  • 英语
  • 政治
  • 地理
  • 历史
  • 化学
  • 生物
  • 物理
  • 综合
  • 高考