问题标题:
【如图,AB是⊙O的直径,CD切⊙O于点C,BE⊥CD于E,连接AC、BC.(1)求证:BC平分∠ABE;(2)若⊙O的半径为2,∠A=60°,求CE的长.】
问题描述:
如图,AB是⊙O的直径,CD切⊙O于点C,BE⊥CD于E,连接AC、BC.
(1)求证:BC平分∠ABE;
(2)若⊙O的半径为2,∠A=60°,求CE的长.
金小刚回答:
(1)证明:∵CD是⊙O的切线,切点为C,∴OC⊥DE,∵BE⊥DE,∴CO∥BE,∴∠OCB=∠EBC,又∵且OC=OB,∴∠OCB=∠OBC;∴∠OBC=∠EBC,∴BC平分∠ABE;(2)∵AB是⊙O的直径,∴∠ACB=90°,∵∠A=60°,∴∠ABC=30°...
点击显示
其它推荐
热门其它推荐