问题标题:
数学数列[1*1/(1*1-1*100+5000)]+[2*2/(2*2-2*100+5000)]+...+[99*99/(99*99-99*100+5000)]=?数学高手们帮帮忙,多谢了!
问题描述:
数学数列
[1*1/(1*1-1*100+5000)]+[2*2/(2*2-2*100+5000)]+...+[99*99/(99*99-99*100+5000)]=?
数学高手们帮帮忙,多谢了!
戴小明回答:
通项公式为{an}=n^2/(n^2-100n+5000)
{a(100-n)}=(100-n)^2/[(100-n)^2-100(100-n)+5000]
=(100-n)^2/(10000-200n+n^2-10000+100n+5000)
=(100-n)^2/(n^2-100n+5000)
所以{an}+{a(100-n)}=n^2/(n^2-100n+5000)+(100-n)^2/(n^2-100n+5000)
=(2n^2-200n+10000)/(n^2-100n+5000)=2
原题共有99项,其中98项(比如1和99,2和98...49和51)相对应,有49组,每组相加均等于2,第50项独立
所以[1*1/(1*1-1*100+5000)]+[2*2/(2*2-2*100+5000)]+...+[99*99/(99*99-99*100+5000)]=49*2+50^2/(50^2-100*50+5000)=98+1=99
点击显示
数学推荐
热门数学推荐