字典翻译 问答 小学 数学 已知函数y=x²+mx+m-2,试判断对任意实数m,函数图像与x轴的交点个数,若存在两个交点,求两交点间距离的最小
问题标题:
已知函数y=x²+mx+m-2,试判断对任意实数m,函数图像与x轴的交点个数,若存在两个交点,求两交点间距离的最小
问题描述:

已知函数y=x²+mx+m-2,试判断对任意实数m,函数图像与x轴的交点个数,若存在两个交点,求两交点间距离的最小

付景超回答:
  令y=0   x²+mx+m-2=0   有判别式Δ=m²-4(m-2)=(m-2)²+4>0   所以恒有2个根   交点距离=x₁-x₂=√((x₁+x₂)²-4x₁x₂)=√(m²-4m+8)   因为当m=2时m²-4m+8有最小值4   所以交点距离的最小值为2
点击显示
数学推荐
热门数学推荐
  • 语文
  • 数学
  • 英语
  • 科学
  • 作文