问题标题:
【数学等差数列求和难题求和:1+(1/1+2)+(1/1+2+3)+······+(1/1+2+3+·····+n)】
问题描述:
数学等差数列求和难题
求和:1+(1/1+2)+(1/1+2+3)+······+(1/1+2+3+·····+n)
汤勇刚回答:
你求的是1+1/(1+2)+1/(1+2+3)+······+1/(1+2+3+·····+n)吧
1+2+3+·····+n=n(n+1)/2
1/(1+2+3+·····+n)=2/[n(n+1)]=2[1/n-1/(n+1)]
所以:
1+1/(1+2)+1/(1+2+3)+······+1/(1+2+3+·····+n)
=2(1/1-1/2)+2(1/2-1/3)+2(1/3-1/4)+……+2[1/n-1/(n+1)]
=2[1/1-1/(n+1)]
=2n/(n+1)
点击显示
数学推荐
热门数学推荐