问题标题:
【一道数学的代数证明:设a、b、c皆是大于0的实数……设a、b、c皆是大于0的实数,满足a^2=b(b+c),b^2=c(c+a),求证:a分之一+b分之一=c分之一.】
问题描述:
一道数学的代数证明:设a、b、c皆是大于0的实数……
设a、b、c皆是大于0的实数,满足a^2=b(b+c),b^2=c(c+a),求证:a分之一+b分之一=c分之一.
黄世银回答:
证明
∵b^2=c(c+a)
∴b^2-c^2=ca.①
又∵a^2=b(b+c).②
①×②得
a^2(b+c)(b-c)=ab(b+c)
∴a(b-c)=bc
∴ab=bc+ac
∴1/a+1/b=1/c
点击显示
数学推荐
热门数学推荐