问题标题:
【四棱锥P~ABCD的底面ABCD是边长为6的正方形,且PA=PB=PC=PD.若一个半径为1的球与此四棱锥的所有面都相切,则此四棱锥的体积为?】
问题描述:
四棱锥P~ABCD的底面ABCD是边长为6的正方形,且PA=PB=PC=PD.若一个半径为1的球与此
四棱锥的所有面都相切,则此四棱锥的体积为?
刘镇培回答:
做正四棱锥图形P-ABCD过p点,做垂直于面ABCD的垂线,与面ABCD相交于0点,则PO为正四棱锥的高根据四棱锥体积公式,V=1/3×底面积×高得,底面边长为:根号6连接OB、OC易知△BOC为等腰直角三角形,根据勾股定理,知OC=根号3由...
点击显示
数学推荐
热门数学推荐