字典翻译 问答 高中 数学 高中数学题已知椭圆T:x2/a2+y2/b2=1(a>b>0)和双曲线S:x2/m2-y2/n2=1(m>0,n>0)具有相同的焦点为F(2,0)设双曲线S经过第一象限的渐近线为l若焦点F和椭圆的上顶点B关于直线l的对称点都在双曲线s上求两曲
问题标题:
高中数学题已知椭圆T:x2/a2+y2/b2=1(a>b>0)和双曲线S:x2/m2-y2/n2=1(m>0,n>0)具有相同的焦点为F(2,0)设双曲线S经过第一象限的渐近线为l若焦点F和椭圆的上顶点B关于直线l的对称点都在双曲线s上求两曲
问题描述:

高中数学题

已知椭圆T:x2/a2+y2/b2=1(a>b>0)和双曲线S:x2/m2-y2/n2=1(m>0,n>0)具有相同的焦点为F(2,0)设双曲线S经过第一象限的渐近线为l若焦点F和椭圆的上顶点B关于直线l的对称点都在双曲线s上求两曲线方程

刘林虎回答:
  椭圆T:x^2/a^2+y^2/b^2=1(a>b>0)和双曲线S:x^2/m^2-y^2/n^2=1(m>0,n>0)具有相同的焦点为F(2,0),   ∴a^2-b^2=4=m^2+n^2,①   F(2,0),B(0,b)关于l:x/m-y/n=0,即nx-my=0的对称点分别是F'((m^2-n^2)/2,mn),B'(bmn/2,(bn^2-bm^2)/4)(由①),   F',B'都在双曲线S上,   ∴(m^2-n^2)^2/(4m^2)-m^2=1,   b^2n^2/4-(bn^2-bm^2)^2/(16n^2)=1,   化简得-3m^4-2m^2n^2+n^4=4m^2,②   4b^2n^4-b^2(n^2-m^2)^2=16n^2,③   由①,m^2=4-n^2,代入②,得-3(16-8n^2+n^4)-2n^2(4-n^2)+n^4=4(4-n^2),   整理得20n^2=64,n^2=16/5,m^2=4/5,   代入③,b^2*[1024/25-144/25]=256/5,b^2=16/11,a^2=28/11,   ∴椭圆方程是x^2/(28/11)+y^2/(16/11)=1,双曲线方程是x^2/(4/5)-y^2/(16/5)=1.
点击显示
数学推荐
热门数学推荐
  • 语文
  • 数学
  • 英语
  • 政治
  • 地理
  • 历史
  • 化学
  • 生物
  • 物理
  • 综合
  • 高考