问题标题:
已知四棱锥O-ABCD的顶点在球心O,底面正方形ABCD的四个顶点在球面上,且四棱锥O-ABCD的体积为3根号2/2,AB=根号3,则球O的体积为多少?
问题描述:
已知四棱锥O-ABCD的顶点在球心O,底面正方形ABCD的四个顶点在球面上,且四棱锥O-ABCD的体积为3根号2/2,
AB=根号3,则球O的体积为多少?
孙丰回答:
由题可知,四棱锥的棱OA是球的半径,只要求出OA的长度,就可以求出球的体积了.∴令r=OA由四棱锥体积公式得:V(四棱锥)=1/3ShS为底面正方形面积,h为高.∴S=AB²由题知V=3√2/2AB=√3∴S=AB²=3h=√2/2又(AB/...
点击显示
数学推荐
热门数学推荐