字典翻译 问答 高中 数学 设数列的前an的前n项和为Sn,Sn=2an-2^n(1)求a1,a2,a3(2)证明{an+1-2an}是等比数列(3)求an的通项公式高二数学上数列.
问题标题:
设数列的前an的前n项和为Sn,Sn=2an-2^n(1)求a1,a2,a3(2)证明{an+1-2an}是等比数列(3)求an的通项公式高二数学上数列.
问题描述:

设数列的前an的前n项和为Sn,Sn=2an-2^n(1)求a1,a2,a3(2)证明{an+1-2an}是等比数列(3)求an的通项公式

高二数学上数列.

郭瑞强回答:
  a(1)=s(1)=2a(1)-2,a(1)=2,s(n)=2a(n)-2^n,s(n+1)=2a(n+1)-2^(n+1),a(n+1)=s(n+1)-s(n)=2a(n+1)-2^(n+1)-2a(n)+2^n,a(n+1)=2a(n)+2^n,{b(n)=a(n+1)-2a(n)=2^n}是首项为b(1)=2,公比为2的等比数列.a(n+1)=2a(n)...
点击显示
数学推荐
热门数学推荐
  • 语文
  • 数学
  • 英语
  • 政治
  • 地理
  • 历史
  • 化学
  • 生物
  • 物理
  • 综合
  • 高考