字典翻译 问答 小学 数学 韦达定理的题目已知p+q=198,求方程x2(x的平方)+px+q=0的整数根
问题标题:
韦达定理的题目已知p+q=198,求方程x2(x的平方)+px+q=0的整数根
问题描述:

韦达定理的题目

已知p+q=198,求方程x2(x的平方)+px+q=0的整数根

李嵬回答:
  设方程的两整数根为x1、x2,不妨设x1≤x2.由韦达定理,得   x1+x2=-p,x1x2=q.   于是x1x2-(x1+x2)=p+q=198,   即x1x2-x1-x2+1=199.   ∴(x1-1)(x2-1)=199.   注意到x1-1、x2-1均为整数,   解得x1=2,x2=200;x1=-198,x2=0.
点击显示
数学推荐
热门数学推荐
  • 语文
  • 数学
  • 英语
  • 科学
  • 作文