问题标题:
使奇函数f(x)=sin(2x+y)+根号3cos(2x+y)在[-π/4,0]上为减函数的y值为?
问题描述:
使奇函数f(x)=sin(2x+y)+根号3cos(2x+y)在[-π/4,0]上为减函数的y值为?
李国珍回答:
f(x)=sin(2x+y)+√3cos(2x+y)=2[1/2sin(2x+y)+√3/2cos(2x+y)]=2sin(2x+y+π/3)函数的周期T=2π/2=π那么[-π/4,0]上为减函数[-π/4,0]是f(x)一个完整的减区间∴x=0时,f(x)取得最小值即f(0)=-2,sin(y+π/3)=-1...
高文回答:
你的答案不对
李国珍回答:
是有问题,正要修正[-π/4,0]不是f(x)一个完整的减区间区间长度为T/4,你在检查一下原题只能求范围,无法求值-π/4≤x≤0-π/2≤2x≤0-π/6≤2x+π/3≤π/3y-π/6≤2x+π/3+y≤y+π/3当2Kπ+π/2≤2x+y+π/3≤2Kπ+3π/2时,函数递减∴[y-π/6,y+π/3]是[2Kπ+π/2,2Kπ+3π/2]的子集取k=0,π/2≤2x+y+π/3≤3π/2∴y-π/6≥π/2,y+π/3≤3π/2∴y≥2π/3,y≤7π/6∴2π≤y≤7π/6.................................
高文回答:
还是错了
李国珍回答:
应该是y-π/6≥2Kπ+π/2,y+π/3≤2Kπ+3π/2∴2Kπ+2π/3≤y≤2Kπ+7π/6①f(x)是奇函数(刚看到)f(-x)=-f(x)f(0)=0sin(y+π/3)=0∴y+π/3=nπ∴y=nπ-π/3②①②==>y=2kπ+2π/3,k∈Z
点击显示
数学推荐
热门数学推荐