问题标题:
如图,在四边形ABCD中,∠ABC=∠ADC=90°,对角线AC与BD相交于点O,M、N分别是边AC、BD的中点.(1)求证:MN⊥BD;(2)当∠BCA=15°,AC=10cm,OB=OM时,求MN的长.
问题描述:
如图,在四边形ABCD中,∠ABC=∠ADC=90°,对角线AC与BD相交于点O,M、N分别是边AC、BD的中点.
(1)求证:MN⊥BD;
(2)当∠BCA=15°,AC=10cm,OB=OM时,求MN的长.
牛盼盼回答:
(1)证明:连接BM、DM.∵∠ABC=∠ADC=90°,点M、点N分别是边AC、想BD的中点,∴BM=DM=12AC,∵N是BD的中点,∴MN是BD的垂直平分线,∴MN⊥BD.(2)∵∠BCA=15°,BM=CM=12AC,∴∠BCA=∠CBM=15°,∴∠BMA=3...
点击显示
数学推荐
热门数学推荐