问题标题:
【已知三次函数f(x)=ax3+bx2+cx+d(a≠0)为R上奇函数,且在x=33处取得极值-239.记函数图象为曲线C.(Ⅰ)求函数f(x)的表达式;(Ⅱ)设曲线C与其在点P1(1,f(1))处的切线交于另一点P2】
问题描述:
已知三次函数f(x)=ax3+bx2+cx+d(a≠0)为R上奇函数,且在x=
3
3
(Ⅰ)求函数f(x)的表达式;
(Ⅱ)设曲线C与其在点P1(1,f(1))处的切线交于另一点P2(x2,f(x2)),线段P1P2与曲线C所围成封闭图形的面积记为S1,求S1的值;
(Ⅲ) 在(Ⅱ)的条件下,设曲线C与其在点P2处的切线交于另一点P3(x3,f(x3)),线段P2P3与曲线C所围成封闭图形的面积记为S2,…,按此方法依次做下去,即设曲线C与其在点Pn(xn,f(xn))处的切线交于另一点Pn+1(xn+1,f(xn+1)),线段PnPn+1与曲线C所围成封闭图形的面积记为Sn,试求Sn关于n的表达式.
金光明回答:
(Ⅰ)∵三次函数为R上奇函数,∴f(0)=0,f(-1)=-f(1)
即d=0且-a+b-c=-a-b-c
∴b=d=0
即f(x)=ax3+cx,f′(x)=3ax2+c,又f(x)=ax3+cx在x=33
点击显示
其它推荐
热门其它推荐