问题标题:
二重积分∫∫(y+√x^2+y^2)dxdyD为x^2+Y^2
问题描述:
二重积分∫∫(y+√x^2+y^2)dxdyD为x^2+Y^2
刘书舟回答:
2012-10-1821:11区域为:(x-1)²+y²≤4,以(1,0)为圆心,2为半径的圆.
先积y,
∫∫x²dxdy
=∫[-1---->3]dx∫[-√(3-x²+2x)----->√(3-x²+2x)]x²dy
=2∫[-1---->3]x²√(3-x²+2x)dx
=2∫[-1---->3]x²√(4-(x-1)²)dx
令x-1=2sinu,则√(4-(x-1)²)=2cosu,dx=2cosudu,u:0---->π/2
=2∫[-π/2---->π/2](2sinu+1)²*2cosu*2cosudu
=32∫[-π/2---->π/2]sin²ucos²udu+8∫[-π/2---->π/2]cos²udu
=8∫[-π/2---->π/2]sin²2udu+4∫[-π/2---->π/2](1+cos2θ)du
=4∫[-π/2---->π/2](1-cos4u)du+4π
=4(u-(1/4)sin4u)+4π[-π/2---->π/2]
=8π
点击显示
数学推荐
热门数学推荐