问题标题:
设a≠0,b≠0,求lim(x→0)[ln(cosax)]/[ln(cosbx)]
问题描述:
设a≠0,b≠0,求lim(x→0)[ln(cosax)]/[ln(cosbx)]
管天云回答:
lim(x→0)[ln(cosax)]/[ln(cosbx)]
这是0/0型极限,应用洛必达法则,求导得
=lim(x→0)[-(sinax)*a/(cosax)]/[-(sinbx)*b/(cosbx)]
=lim(x→0)(tanax)*a/[(tanbx)*b]
运用等价无穷小,tanax~ax,tanbx~bx
=lim(x→0)ax*a/(bx*b)
=a²/b²
点击显示
数学推荐
热门数学推荐