字典翻译 问答 高中 数学 【高中数学已知函数f(x)在定义域(0,+∞)上为增函数且满足f(xy)=f(x)+f(y),若f(3)=1解不等式f(x)+f(x-8)≤2已知函数f(x)在定义域(0,+∞)上为增函数且满足f(xy)=f(x)+f(y),若f(3)=1解不等式f(x)+f(x-8)≤2】
问题标题:
【高中数学已知函数f(x)在定义域(0,+∞)上为增函数且满足f(xy)=f(x)+f(y),若f(3)=1解不等式f(x)+f(x-8)≤2已知函数f(x)在定义域(0,+∞)上为增函数且满足f(xy)=f(x)+f(y),若f(3)=1解不等式f(x)+f(x-8)≤2】
问题描述:

高中数学已知函数f(x)在定义域(0,+∞)上为增函数且满足f(xy)=f(x)+f(y),若f(3)=1解不等式f(x)+f(x-8)≤2

已知函数f(x)在定义域(0,+∞)上为增函数且满足f(xy)=f(x)+f(y),若f(3)=1解不等式f(x)+f(x-8)≤2

郭春燕回答:
  根据题意,由f(3)=1,   得f(9)=f(3)+f(3)=2.   又f(x)+f(x-8)=f[x(x-8)],   故f[x(x-8)]≤f(9).   ∵f(x)在定义域(0,+∞)上为增函数,   ∴x>0,x-8>0,x(x-8)≤9   解得8<x≤9.   ∴原不等式的解集为{x|8<x≤9}.
点击显示
数学推荐
热门数学推荐
  • 语文
  • 数学
  • 英语
  • 政治
  • 地理
  • 历史
  • 化学
  • 生物
  • 物理
  • 综合
  • 高考