问题标题:
教教我九年级数学题已知Rt△ABC中,AB=BC,在Rt△ADE中,AD=DE,连结EC,取EC中点M,连结DM和BM,(1)若点D在边AC上,点E在边AB上且与点B不重合,如图①,求证:BM=DM且BM⊥DM;(2)如图①中的
问题描述:
教教我九年级数学题已知Rt△ABC中,AB=BC,在Rt△ADE中,AD=DE,连结EC,取EC中点M,连结DM和BM,(1)若点D在边AC上,点E在边AB上且与点B不重合,如图①,求证:BM=DM且BM⊥DM;(2)如图①中的△ADE绕点A逆时针转小于45°的角,如图②,那么(1)中的结论是否仍成立?如果不成立,请举出反例;如果成立,请给予证明。
贾永峰回答:
(1)在Rt△EBC中,M是斜边EC上的中点,∴DM=EC/2,在在Rt△EDC中,M是斜边EC上的中点,∴BM=EC/2,∴BM=DM,且点B、C、D、E在以点M为圆心,BM为半径的圆上。∴∠BDM=2∠ACB=90度,即BM⊥DM。(2)当△ADE绕点...
点击显示
数学推荐
热门数学推荐