字典翻译 问答 高中 数学 在高等数学中,运用夹逼定理,G(X)小于F(X)小于W(X),但是G(X)和W(X)的极限值不等,可不可以说明F(X)不存在极限?
问题标题:
在高等数学中,运用夹逼定理,G(X)小于F(X)小于W(X),但是G(X)和W(X)的极限值不等,可不可以说明F(X)不存在极限?
问题描述:

在高等数学中,运用夹逼定理,G(X)小于F(X)小于W(X),但是G(X)和W(X)的极限值不等,

可不可以说明F(X)不存在极限?

刘清革回答:
  不可以通过这个证明F(X)极限不存在.   只有在G(X)小于F(X)小于W(X),而且G(X)和W(X)的极限值相等,才可以证明F(X)极限等于G(X)和W(X)的极限   不要混淆了.
点击显示
数学推荐
热门数学推荐
  • 语文
  • 数学
  • 英语
  • 政治
  • 地理
  • 历史
  • 化学
  • 生物
  • 物理
  • 综合
  • 高考