问题标题:
设映射f:X→Y,A包含于X,B包含于X,证明f(A∪B)=f(A)∪f(B);f(A∩B)包含于f(A)∩f(B)我能推出y∈f(A)∪f(B),但是为什么f(A∪B)包含于f(A)∪f(B)?
问题描述:
设映射f:X→Y,A包含于X,B包含于X,证明
f(A∪B)=f(A)∪f(B);
f(A∩B)包含于f(A)∩f(B)
我能推出y∈f(A)∪f(B),但是为什么f(A∪B)包含于f(A)∪f(B)?
蔡恒进回答:
1.任取y∈f(A∪B),则存在x属于A∪B,使得y=f(x).
则x∈A或者x∈B,所以,y=f(x)∈f(A)或者y=f(x)∈f(B).
所以y∈f(A)∪f(B).所以f(A∪B)包含于f(A)∪f(B)
任取y∈f(A)∪f(B),则y属于f(A)或者f(B)所以存在x∈A或者B使得f(x)=y.
即x∈A∪B.所以y∈f(A∪B).所以f(A)∪f(B)包含于f(A∪B)
所以f(A∪B)=f(A)∪f(B);
2.任取y∈f(A∩B),则存在x∈A∩B,使得y=f(x).
则x∈A且x∈B,所以y=f(x)∈f(A)且y=f(x)∈f(B).
所以y∈f(A)∩f(B)
所以f(A∩B)包含于f(A)∩f(B)
点击显示
数学推荐
热门数学推荐