问题标题:
已知函数f(x)=λ•2x-4x的定义域为[0,1].(1)若函数f(x)在[0,1]上是单调递减函数,求实数λ的取值范围;(2)若函数f(x)的最大值为12,求实数λ的值.
问题描述:
已知函数f(x)=λ•2x-4x的定义域为[0,1].
(1)若函数f(x)在[0,1]上是单调递减函数,求实数λ的取值范围;
(2)若函数f(x)的最大值为
查冰回答:
(1)设2x=t,
∵函数f(x)=λ•2x-4x=-(2x)2+λ•2x定义域为[0,1],
∴2x∈[1,2],y=-t2+λt,t∈[1.2],
∵函数f(x)在[0,1]上是单调递减函数,
∴y=-t2+λt在[1.2]是减函数,
∴t=λ2
点击显示
其它推荐