问题标题:
高等数学极限lim[(x+1)/(x-2)]^(2x+1),x趋向于无穷大
问题描述:
高等数学极限lim[(x+1)/(x-2)]^(2x+1),x趋向于无穷大
童俊回答:
lim【x→∞】[(x+1)/(x-2)]^(2x+1)
=lim【x→∞】[1-3/(x-2)]^(2x+1)
=lim【x→∞】{[1-3/(x-2)]^[-(x-2)/3]}^(-6)·[1-3/(x-2)]^5
=e^(-6)
罗宇回答:
lim【x→∞】[(x+1)/(x-2)]^(2x+1)=lim【x→∞】[1-3/(x-2)]^(2x+1)=lim【x→∞】{[1-3/(x-2)]^[-(x-2)/3]}^(-6)·[1-3/(x-2)]^5=e^(-6)第二步1是加还是减
童俊回答:
sorry,是加lim【x→∞】[(x+1)/(x-2)]^(2x+1)=lim【x→∞】[1+3/(x-2)]^(2x+1)=lim【x→∞】{[1+3/(x-2)]^[(x-2)/3]}^(6)·[1-3/(x-2)]^5=e^6
点击显示
数学推荐
热门数学推荐