问题标题:
若等差数列{an}的公差为2,且a5是a2与a6的等比中项,则该数列的前n项和Sn取最小值时,n的值等于()A.7B.6C.5D.4
问题描述:
若等差数列{an}的公差为2,且a5是a2与a6的等比中项,则该数列的前n项和Sn取最小值时,n的值等于()
A.7
B.6
C.5
D.4
李芾回答:
由a5是a2与a6的等比中项,
可得a52=a2a6,
由等差数列{an}的公差d为2,
即(a1+8)2=(a1+2)(a1+10),
解得a1=-11,
an=a1+(n-1)d=-11+2(n-1)=2n-13,
由a1<0,a2<0,…,a6<0,a7>0,…
可得该数列的前n项和Sn取最小值时,n=6.
故选:B.
点击显示
数学推荐
热门数学推荐