问题标题:
【已知某探照灯的轴截面是抛物线y2=x,如图所示,表示平行于对称轴y=0(即x轴)的光线与抛物线上的点P、Q的反射情况,设点P的纵坐标为a(a>0),a取何值时,从入射点P到反射点Q的光线】
问题描述:
已知某探照灯的轴截面是抛物线y2=x,如图所示,表示平行于对称轴y=0(即x轴)的光线与抛物线上的点P、Q的反射情况,设点P的纵坐标为a(a>0),a取何值时,从入射点P到反射点Q的光线路程PQ最短?
陈加栋回答:
思路
解析:
由抛物线的光学性质,光源置于抛物镜面的焦点处,光经抛物面反射成一束射出,因此,入射光线与反射光线成平行状态,那么光线PQ必经过抛物线的焦点.由题设知点P的坐标为(a2,a),故直线PQ的方程为:y=(x-)即4ax-(4a2-1)y-a=0.解方程组得y1=-y1=a(舍去)∴x=.∴点Q的坐标为(,-).∴|PQ|=|PF|+|FQ|=a2++.要求由入射点P到反射点Q的路程最小时的参数a的值,利用均值不等式,有|PQ|=(a2+)+≥2+=1.当且仅当a2=,即a=时,上式等号成立.∴入射点P()反射点Q(,-)时,路程PQ最短,这时P、Q恰关于x轴对称.
数学推荐
热门数学推荐