问题标题:
如图,直线y=23x+b与x轴相交于点A(-3,0),与y轴相交于点B,C是x轴上的一个定点,其坐标为(3,0).若M为线段AC上的一个动点(不与点A,C重合),连接MB,以点M为端点作射线MN交AB于点N
问题描述:
如图,直线y=
(1)求证:△MBC∽△NMA;
(2)是否存在点M使△MBN为直角三角形?若存在,请求出点M的坐标;若不存在,请说明理由.
郭旭红回答:
(1)∵A(-3,0),点C的坐标为(3,0).
∴OA=OC
∴OB⊥AC
∴AB=BC
∴∠BAC=∠BCA
∵∠BMN=∠BAC
∴∠BMN=∠BCA
∵AMN=∠CBM=∠BCA
∴∠AMN=∠BMA
∴△MBC∽△NMA;
(2)存在.
理由:Ⅰ、当∠NBM=90°时,
∴△AOB∽△ABM,
∴AMAB=ABAO
点击显示
其它推荐
热门其它推荐