问题标题:
【多元函数求极值为什么要求条件连续的二阶偏导数?】
问题描述:
多元函数求极值为什么要求条件连续的二阶偏导数?
柏海鹰回答:
各个分量的偏导数为0,这是一个必要条件.充分条件是这个多元函数的二阶偏导数的行列式为正定或负定的.如果这个多元函数的二阶偏导数的行列式是半正定的则需要进一步判断三阶行列式.如果这个多元函数的二阶偏导数的行列式是不定的,那么这时不是极值点.
以二元函数为例,设函数z=f(x,y)在点(x.,y.)的某邻域内有连续且有一阶及二阶连续偏导数,又fx(x.,y.),fy(x.,y.)=0,令
fxx(x.,y.)=A,fxy=(x.,y.)=B,fyy=(x.,y.)=C
则f(x,y)在(x.,y.)处是否取得极值的条件是
(1)AC-B*B>0时有极值
(2)AC-B*B
点击显示
数学推荐
热门数学推荐