问题标题:
【数列{an}{bn}满足关系式bn=1*a1+2*a2+3*a3…+nan/1+2+3+…+n若{an}为等差数列,求证数列{bn}也是等差数列】
问题描述:
数列{an}{bn}满足关系式bn=1*a1+2*a2+3*a3…+nan/1+2+3+…+n
若{an}为等差数列,求证数列{bn}也是等差数列
姜立新回答:
证明:若{an}为等差数列,设公差为d,则b[n]={(1+2+……+n)*a1+[1*2+2*3+……+(n-1)n]d}/(1+2+……+n)=a1+(1^2+2^2+3^2+……+n^2)d-(1+2+……+n)d/(1+2+……+n)=a1+[n(n+1)(2n+1)d/6-n(n+1)d/2]/[n(n+1)/2]=a1+(2n+1)...
点击显示
数学推荐
热门数学推荐