问题标题:
已知:如图,在▱ABCD中,点E是BC的中点,连接AE并延长交DC的延长线于点F,连接BF.(1)求证:△ABE≌△FCE;(2)若AF=AD,求证:四边形ABFC是矩形.
问题描述:
已知:如图,在▱ABCD中,点E是BC的中点,连接AE并延长交DC的延长线于点F,连接BF.
(1)求证:△ABE≌△FCE;
(2)若AF=AD,求证:四边形ABFC是矩形.
马修水回答:
证明:(1)如图.∵四边形ABCD是平行四边形,∴AB∥DC 即 AB∥DF,∴∠1=∠2,∵点E是BC的中点,∴BE=CE.在△ABE和△FCE中,∠1=∠2∠3=∠4BE=CE,∴△ABE≌△FCE(AAS).(2)∵△ABE≌△FCE,∴AB...
点击显示
数学推荐
热门数学推荐