问题标题:
半径为R的半球形陶罐,固定在可以绕竖直轴旋转的水平转台上,转台转轴与过陶罐球心O的对称轴OO′重合.转台以一定角速度ω匀速转动,一质量为m的小物块落入陶罐内,经过一段时间后,
问题描述:
半径为R的半球形陶罐,固定在可以绕竖直轴旋转的水平转台上,转台转轴与过陶罐球心O的对称轴OO′重合.转台以一定角速度ω匀速转动,一质量为m的小物块落入陶罐内,经过一段时间后,小物块随陶罐一起转动且相对罐壁静止,它和O点的连线与OO′之间的夹角θ为60°.重力加速度大小为g.
(1)若ω=ω0,小物块受到的摩擦力恰好为零,求ω0;
(2)ω=
沈林武回答:
(1)当摩擦力为零,支持力和重力的合力提供向心力,有:mgtanθ=mRsinθω02,解得ω0=2gR(2)当ω=2g25R时,需要的向心力比较小,摩擦力方向沿罐壁切线向上,根据牛顿第二定律得,Ncos30°-fcos60°=mRsin60°ω2...
点击显示
物理推荐
热门物理推荐