问题标题:
(2010•乐山)勾股定理揭示了直角三角形三边之间的关系,其中蕴含着丰富的科学知识和人文价值.如图所示,是一棵由正方形和含30°角的直角三角形按一定规律长成的勾股树,树主干自
问题描述:
(2010•乐山)勾股定理揭示了直角三角形三边之间的关系,其中蕴含着丰富的科学知识和人文价值.如图所示,是一棵由正方形和含30°角的直角三角形按一定规律长成的勾股树,树主干自下而上第一个正方形和第一个直角三角形的面积之和为S1,第二个正方形和第二个直角三角形的面积之和为S2,…,第n个正方形和第n个直角三角形的面积之和为Sn.设第一个正方形的边长为1.
请解答下列问题:
(1)S1= ;
(2)通过探究,用含n的代数式表示Sn,则Sn= .
何存富回答:
根据正方形的面积公式求出面积,再根据直角三角形三条边的关系运用勾股定理求出三角形的直角边,求出S1,然后利用正方形与三角形面积扩大与缩小的规律推导出公式.
【解析】
(1)∵第一个正方形的边长为1,
∴正方形的面积为1,
又∵直角三角形一个角为30°,
∴三角形的一条直角边为,另一条直角边就是=,
∴三角形的面积为÷2=,
∴S1=1+;
(2)∵第二个正方形的边长为,它的面积就是,也就是第一个正方形面积的,
同理,第二个三角形的面积也是第一个三角形的面积的,
∴S2=(1+)•,依此类推,S3=(1+)••,即S3=(1+)•,
Sn=()•(n为整数).
点击显示
科学推荐
热门科学推荐