问题标题:
高中立体几何二面角题目在棱长为1的正方体ABCD-A1B1C1D1的棱A1B1上求一点M,使二面角A-MB-C1的大小为120ο
问题描述:
高中立体几何二面角题目
在棱长为1的正方体ABCD-A1B1C1D1的棱A1B1上求一点M,使二面角A-MB-C1的大小为120ο
陈光裕回答:
二面角A-MB-C'的大小为120°,即二面角B'-MB-C'的大小为60°
作B'N⊥MB于N,连C'N
∵B'C'⊥面MBB'
∴∠C'NB'就是二面角B'-MB-C'的平面角,为60°
∵B'C'=1
∴B'N=√3/3
设MB'=x,则
MB=√(x²+1)
MB·B'N=2S△BB'M=BB'·MB'
√[3(x²+1)]/3=x
x²+1=3x²
x=±√2/2,取正值
∴当MB'=√2/2时,二面角A-MB-C'的大小为120°
点击显示
数学推荐
热门数学推荐