问题标题:
设f(x)=e^x/1+ax^2,其中a为正实数(1)当a=4/3时,求f(x)的极值点1求f(x)的极值点2若f(x)为R上单调函数,求a的取值范围
问题描述:
设f(x)=e^x/1+ax^2,其中a为正实数(1)当a=4/3时,求f(x)的极值点
1求f(x)的极值点2若f(x)为R上单调函数,求a的取值范围
钱坤回答:
(Ⅰ)首先对f(x)求导,将a=代入,令f′(x)=0,解出后判断根的两侧导函数的符号即可.(Ⅱ)因为a>0,所以f(x)为R上为增函数,f′(x)≥0在R上恒成立,转化为二次函数恒成立问题,只要△≤0即可.对f(x)求导得f′(x)=(Ⅰ)当a=时,若f′(x)=0,则4x2-8x+3=0,解得结合①,可知所以,是极小值点,是极大值点.(Ⅱ)若f(x)为R上的单调函数,则f′(x)在R上不变号,结合①与条件a>0知ax2-2ax+1≥0在R上恒成立,因此△=4a2-4a=4a(a-1)≤0,由此并结合a>0,知0<a≤1.
点击显示
数学推荐
热门数学推荐