问题标题:
【证明下列各题:(1)cos20°(tan40°-根号3)=-tan40°;(2)sin(α+β)-2cosαsinβ=tan(α-β)[2cosαcosβ-cos(α+β)].】
问题描述:
证明下列各题:
(1)cos20°(tan40°-根号3)=-tan40°;
(2)sin(α+β)-2cosαsinβ=tan(α-β)[2cosαcosβ-cos(α+β)].
陈仲怀回答:
(1)
cos20(tan40-√3)
=cos20(tan40-tan60)
=cos20(sin40cos60-cos40sin60)/(cos40cos60)=cos20sin(40-60)/[(cos40)/2]
=-2sin20cos20/cos40
=-tan40
(2)
左边=
sin(α+β)-2cosαsinβ
=sinαcosβ+cosαsinβ-2cosαsinβ
=sinαcosβ-cosαsinβ
=sin(α-β)
右边=
tan(α-β)[2cosαcosβ-cos(α+β)]
=tan(α-β)(2cosαcosβ-cosαcosβ+sinαsinβ)
=tan(α-β)(cosαcosβ+sinαsinβ)
=tan(α-β)cos(α-β)
=sin(α-β)
左边=右边
等式成立
点击显示
数学推荐
热门数学推荐