问题标题:
【给出以下四个命题:①一组对边平行的四边形是梯形;②一条对角线平分一个内角的平行四边形是菱形;③对角线互相垂直的矩形是正方形;④一组对边平行,另一组对边相等的四边形是平】
问题描述:
给出以下四个命题:①一组对边平行的四边形是梯形;②一条对角线平分一个内角的平行四边形是菱形;③对角线互相垂直的矩形是正方形;④一组对边平行,另一组对边相等的四边形是平行四边形.其中真命题有()
A.1个
B.2个
C.3个
D.4个
曲建平回答:
①、错误,根据梯形的概念:“一组对边平行,而另一组对边不平行的四边形”判定可知.
②、正确,由于平行四边形中两组对角相等,一条对角线平分一个内角,则也要平分另一个角,再根据等角对等边,得到平行四边形的一组邻边相等,故有邻边相等的平行四边形是菱形.
③、正确,由于矩形的两条对角线相等且平分,对角线互相垂直,则两条对角线的一半与边成等腰直角三角形,故是正方形.
④、错误,等腰梯形满足此条件,但不是平行四边形.
故选B.
点击显示
数学推荐
热门数学推荐