问题标题:
过抛物线y^2=6x的顶点作相互垂直的两条直线,交抛物线于A,B两点,求AB中点的轨迹方程,我要知道具体怎样把AB中点坐标为x=(6/k^2+6k^2)/2=3(1/k^2+k^2),y=(6/k-6k)/2=3(1/k-k)中的参数k消掉
问题描述:
过抛物线y^2=6x的顶点作相互垂直的两条直线,交抛物线于A,B两点,求AB中点的轨迹方程,
我要知道具体怎样把AB中点坐标为x=(6/k^2+6k^2)/2=3(1/k^2+k^2),y=(6/k-6k)/2=3(1/k-k)中的参数k消掉
孙学波回答:
设A(6/k^2,6/k),B(6k^2,-6k)
AB中点坐标为x=(6/k^2+6k^2)/2=3(1/k^2+k^2),y=(6/k-6k)/2=3(1/k-k)
消取参数k,得
AB中点的轨迹方程:y^2=3(x-6)
点击显示
数学推荐
热门数学推荐