问题标题:
是a,b,c,d都是小于1的正数,求证:4a(1-b),4b(1-c),4c(1-d)4d(1-a)这四个数不可能都大于1在放缩法和反证法里面的
问题描述:
是a,b,c,d都是小于1的正数,求证:4a(1-b),4b(1-c),4c(1-d)4d(1-a)这四个数不可能都大于1
在放缩法和反证法里面的
姜许鹏回答:
证明:巧妙地逆用定理,注意4a(1-b)·4b(1-c)·4c(1-d)·4d(1-a)=4a(1-a)·4b(1-b)·4c(1-c)·4d(1-d)≤〔a+(1-a)〕2·〔b+(1-b)〕2·〔c+(1-c)〕2·〔d+(1-d)〕2=12·1...
点击显示
数学推荐
热门数学推荐