问题标题:
【1.六面体ABCD-A'B'C'D'中,AB=5,AD=3,AA'=7,角BAD=60度,角BAA'=角DAA'=45度,求AC'的长2.正方体ABCD-A'B'C'D'棱长为a,求A'B和B'C夹角.求证:A'B垂直于AC'】
问题描述:
1.六面体ABCD-A'B'C'D'中,AB=5,AD=3,AA'=7,角BAD=60度,角BAA'=角DAA'=45度,求AC'的长
2.正方体ABCD-A'B'C'D'棱长为a,求A'B和B'C夹角.
求证:A'B垂直于AC'
龚洁晖回答:
①.向量AC'=向量AB+向量AD+向量AA'=>AC'^2=(向量AB+向量AD+向量AA')^2=AB^2+AD^2+AA'^2+2(向量AB*向量AD+向量AA'*向量AB+向量AD*向量AA')=AB^2+AD^2+AA'^2+2AB*ADcos60+2AA'*ABcos45+2AD*AA'cos45=2...
点击显示
数学推荐
热门数学推荐