字典翻译 问答 高中 数学 【世上最难的数学题】
问题标题:
【世上最难的数学题】
问题描述:

世上最难的数学题

莫慧芳回答:
  哥德巴赫猜想(GoldbachConjecture)   公元1742年6月7日德国的业余数学家哥德巴赫(Goldbach)写信给当时的大数学家欧拉(Euler),提出了以下的猜想:   (a)任何一个n³6之偶数,都可以表示成两个奇质数之和.   (b)任何一个n³9之奇数,都可以表示成三个奇质数之和.   这就是著名的哥德巴赫猜想.从费马提出这个猜想至今,许多数学家都不断努力想攻克它,但都没有成功.当然曾经有人作了些具体的验证工作,例如:   6=3+3,8=3+5,10=5+5=3+7,12=5+7,14=7+7=3+11,   16=5+11,18=5+13,....等等.   有人对33×108以内且大过6之偶数一一进行验算,哥德巴赫猜想(a)都成立.但验格的数学证明尚待数学家的努力.目前最佳的结果是中国数学家陈景润於1966年证明的,称为陈氏定理(Chen‘sTheorem)¾“任何充份大的偶数都是一个质数与一个自然数之和,而后者仅仅是两个质数的乘积.”通常都简称这个结果为大偶数可表示为“1+2”的形式.   在陈景润之前,关於偶数可表示为s个质数的乘积与t个质数的乘积之和(简称“s+t”问题)之进展情况如下:   1920年,挪威的布朗(Brun)证明了“9+9”.   1924年,德国的拉特马赫(Rademacher)证明了“7+7”.   1932年,英国的埃斯特曼(Estermann)证明了“6+6”.   1937年,意大利的蕾西(Ricei)先后证明了“5+7”,“4+9”,“3+15”和“2+366”.   1938年,苏联的布赫夕太勃(Byxwrao)证明了“5+5”.   1940年,苏联的布赫夕太勃(Byxwrao)证明了“4+4”.   1948年,匈牙利的瑞尼(Renyi)证明了“1+c”,其中c是一很大的自然数.   1956年,中国的王元证明了“3+4”.   1957年,中国的王元先后证明了“3+3”和“2+3”.   1962年,中国的潘承洞和苏联的巴尔巴恩(BapoaH)证明了“1+5”,   中国的王元证明了“1+4”.   1965年,苏联的布赫夕太勃(Byxwrao)和小维诺格拉多夫(BHHopappB),及意大利的朋比利(Bombieri)证明了“1+3”.   1966年,中国的陈景润证明了“1+2”.   最终会由谁攻克“1+1”这个难题呢?现在还没法预测.   "X&P_,Sx17|:Yx1etx0e}x18[0ooooo桌面天下5Wx16Xgpx08s4^3b/M   oooo桌面天下1G6gi%H&@x17^x17{   ooooo桌面天下4sx1aR&~!gS;h7Q%@x1a?x1fL   ooooo   x18y4Lx08Ox10Sx11h0ooooo   x1a]%R2Cb7o'Fx0ezd9n0桌面天下x12D#l1w7P+Xx1fX4N   将每个圈用直线连起来,不能用斜线,不能空一个,线不能交叉.桌面天下x1b?6A3^x1fS#Nx0fn+IY3r   (ix17mx0ff3b#~2c*H;kx16^0   zx15Fx12O,o'r0   5g)gx13[x12O-]9T'bH0桌面天下,t5|x17tx12zY*Vx1dvx0fmb   桌面天下u5Zx1bS]4@rx1bI   桌面天下1O&D.x&R$i+Z   8U8gx0fe2Mx06H+t(i0显然右上角的点为起点(或终点),不妨以它为起点,我们对地盘进行染色:   6n"S!bE8K3wx1fZ+]5M0o.o.*桌面天下"Zx15h8CHx1d`x0ez   .o.o   *}Vmx1c]/y%y/z6T5C0o.o.o   z0g*Y2@+lU0.o.o.   8gx0fS;^&{5?x1bt&lx08ku0o.o.o   1O4F9?x14kx17S4a3mx08h'o'~-e0   x19P:I$X(Yx1a_0"*"为起点,"."是黑色,"o"是白色,显然,从*出发,每经过一个"."下一步必经过"o"(除了终点),而白色共12个,黑色11个,路线颜色必然是:桌面天下)Ix18P4G&Nx12z/J2d(X(qx12l   黑白黑白黑白黑白黑白黑白黑白黑白黑白黑白黑白白,显然矛盾,故不存在这样的路线
点击显示
数学推荐
热门数学推荐
  • 语文
  • 数学
  • 英语
  • 政治
  • 地理
  • 历史
  • 化学
  • 生物
  • 物理
  • 综合
  • 高考