字典翻译 问答 小学 数学 如图在正四棱锥P-ABCD中,E是PC的中点,求证:(1)PA‖平面BDE;(2)平面PAC⊥平面BDE.
问题标题:
如图在正四棱锥P-ABCD中,E是PC的中点,求证:(1)PA‖平面BDE;(2)平面PAC⊥平面BDE.
问题描述:

如图在正四棱锥P-ABCD中,E是PC的中点,求证:(1)PA‖平面BDE;(2)平面PAC⊥平面BDE.

蔡恒进回答:
  1:连接AC交BD于点F,再连接EF,所以PA平行于EF.所以平行于面BDE!2:连接PF.所以它垂直底面,跟据三垂线定理因为AC垂直BD,所以BD垂直于PA,又因为BD垂直AC,所以它垂直面PAC,所以面BDE垂直面PAC
点击显示
数学推荐
热门数学推荐
  • 语文
  • 数学
  • 英语
  • 科学
  • 作文