问题标题:
【已知:在平面直角坐标系中,点O为坐标原点,点A的坐标为(0,2),以OA为直径作圆B.若点D是x轴上的一动点,连接AD交圆B于点C.(1)当tan∠DAO=12时,求直线BC的解析式;(2)过点D作DP∥y】
问题描述:
已知:在平面直角坐标系中,点O为坐标原点,点A的坐标为(0,2),以OA为直径作圆B.若点D是x轴上的一动点,连接AD交圆B于点C.
(1)当tan∠DAO=
(2)过点D作DP∥y轴与过B、C两点的直线交于点P,请任意求出三个符合条件的点P的坐标,并确定图象经过这三个点的二次函数的解析式;
(3)若点P满足(2)中的条件,点M的坐标为(-3,3),求线段PM与PB的和的最小值,并求出此时点P的坐标.
石明洪回答:
(1)如图所示,当点D在x轴的正半轴上时,连接OC,过C点作CK⊥y轴于点K.∵OA为圆B的直径,点C在圆B上∴∠ACO=90°∴∠1=∠2∵tan∠1=12∴tan∠2=12设OK的长为x,则KC=2x,可得AK=4x∵点A的坐标为(0,2),OK+KA=OA...
点击显示
其它推荐