问题标题:
在正棱锥P-ABC中,三条側棱两两互相垂直,G是△PAB的重心,E,F分别为BC,PB上的点,且BE:EC=PF:FB=1:2.(1)求证:平面GEF⊥平面PBC;(2)求证:EG是PG与BC的公垂线段.
问题描述:
在正棱锥P-ABC中,三条側棱两两互相垂直,G是△PAB的重心,E,F分别为BC,PB上的点,且BE:EC=PF:FB=1:2.
(1)求证:平面GEF⊥平面PBC;
(2)求证:EG是PG与BC的公垂线段.
孙旭霞回答:
证明:(1)在△PAB中,连接BG延长线交AP与点M
∵G是△PAB的重心,
∴MG=13
点击显示
数学推荐
热门数学推荐