字典翻译 问答 小学 数学 一道概率论求随机变量的边缘密度的简单题目,求助!二维连续型随机变量的定义为:边缘概率密度f(x)或者f(y)可由(X,Y)的概率密度f(x,y)求出:f(x)=∫f(x,y)dy积分区间(﹣∞,﹢∞)
问题标题:
一道概率论求随机变量的边缘密度的简单题目,求助!二维连续型随机变量的定义为:边缘概率密度f(x)或者f(y)可由(X,Y)的概率密度f(x,y)求出:f(x)=∫f(x,y)dy积分区间(﹣∞,﹢∞)
问题描述:

一道概率论求随机变量的边缘密度的简单题目,求助!

二维连续型随机变量的定义为:

边缘概率密度f(x)或者f(y)可由(X,Y)的概率密度f(x,y)求出:

f(x)=∫f(x,y)dy积分区间(﹣∞,﹢∞)-------------------------------不懂1

f(y)=∫f(x,y)dx积分区间(﹣∞,﹢∞)

题目为:

设二维连续型随机变量(X,Y)的联合密度为:

6xy(0

陈冬冰回答:
  这样写会没有问题   F(x):=∫f(x,y)dy积分区间(﹣∞,﹢∞)   =∫6xydy(x²~1)   当x=1,f(x)=0;   2.Y的边缘密度:   当0
高洪亮回答:
  哥们,3,4还是没懂啊。。。感觉你没理解我意思,没说到点子上啊。。。你可否画个图,图上标个箭头啥的用图说明啊?
陈冬冰回答:
  你的问题主要是对f的定义是吗?6xy(0
点击显示
数学推荐
热门数学推荐
  • 语文
  • 数学
  • 英语
  • 科学
  • 作文