问题标题:
1.已知sin(π/6-x)=1/4,sin(π/6+2x)=?2.tan70cos10(1-√3tan20)=?
问题描述:
1.已知sin(π/6-x)=1/4,sin(π/6+2x)=?
2.tan70cos10(1-√3tan20)=?
贾卓生回答:
sin(PI/6+2x)=cos(PI/2-PI/6-2x)=cos(PI/3-2x)
=cos(2*(PI/6-x))=1-2*sin(PI/6-x)^2=1-2*(1/4)^2=7/8
tan70*cos10*(1-√3tan20)
=tan70*cos10-√3cos10
=cos20/sin20*cos10-√3cos10
=cos20/(2sin10)-√3cos10
=(cos20-2√3sin10cos10)/2sin10
=1/2*(cos20-√3sin20)/sin10
=(1/2*cos20-1/2*√3sin20)/sin10
=(sin30*cos20-cos30*sin20)/sin10
=sin(30-20)/sin10
=1
点击显示
数学推荐
热门数学推荐