问题标题:
lim(n→∞)(n+1)(n+2)(n+3)/5n3次方+n的极限?
问题描述:
lim(n→∞)(n+1)(n+2)(n+3)/5n3次方+n的极限?
鲍伯祥回答:
lim(n→∞)(n+1)(n+2)(n+3)/(5n³+n)
=lim(n→∞)(1+1/n)(1+2/n)(1+3/n)/(5+1/n²).分子分母同时除以n³
=1/5
点击显示
数学推荐
热门数学推荐