问题标题:
【数学奥林匹克学校某次入学考试,参加考试的男生与女生的人数之比为4:3,结果录取了91人,其中男生与女生的人数之比为8:5,在没有录取的学生中,男生与女生的人数之比为3:4,那么】
问题描述:
数学奥林匹克学校某次入学考试,参加考试的男生与女生的人数之比为4:3,结果录取了91人,其中男生与女生的人数之比为8:5,在没有录取的学生中,男生与女生的人数之比为3:4,那么参加考试的学生共有______人.
甘丹回答:
一份是:91÷(8+5),
=91÷13,
=7(人),
录取的男生有:7×8=56(人),
录取的女生有:7×5=35(人),
假设未被录取的男生有3b人,女生4b人,
所以(56+3b):(35+4b)=4:3
168+9b=140+16b
28=7b
b=4
未录取的男生有4×3=12(人),
未录取的女生有:4×4=16(人),
所以总人数:56+35+12+16=119(人),
答:参加考试的学生共有119人.
点击显示
数学推荐
热门数学推荐