问题标题:
【如图,等腰梯形ABCD中,AD∥BC,AD=AB=CD=2,∠C=60°,M是BC的中点.(1)求证:△MDC是等边三角形;(2)将△MDC绕点M旋转,当MD(即MD′)与AB交于一点E,MC(即MC′)同时与AD交于一点F时,】
问题描述:
如图,等腰梯形ABCD中,AD∥BC,AD=AB=CD=2,∠C=60°,M是BC的中点. |
刘莉芳回答:
(1)见解析(2)存在,△AEF的周长的最小值为2+
(1)证明:连接AM,过点D作DP⊥BC于点P,过点A作AQ⊥BC于点Q,即AQ∥DP,∵AD∥BC,∴四边形ADPQ是平行四边形,∴AD=QP=AB=CD,∵∠C=∠B=60°,∴∠BAQ=∠CDP=30°,∴CP=BQ=AB=1,即BC=1+1+2=4,∵CD=2,∴BC=2CD,∵点M是BC的中点,BC=2CM,∴CD=CM,∵∠C=60°,∴△MDC是等边三角形.(2)△AEF的周长存在最小值,理由如下:过D作DN⊥BC于N,连接AM,∵∠C=60°,∴∠CDN=30°,∵CD=2,∴CN=1,∴由勾股定理得:DN=,连接AM,由(1)平行四边形ABMD是菱形,△MAB,△MAD和△MC′D′是等边三角形,∠BMA=∠BME+∠AME=60°,∠EMF=∠AMF+∠AME=60°,∴∠BME=∠AMF,在△BME与△AMF中,,∴△BME≌△AMF(ASA),∴BE=AF,ME=MF,AE+AF=AE+BE=AB,∵∠EMF=∠DMC=60°,故△EMF是等边三角形,EF=MF,∵MF的最小值为点M到AD的距离等于DN的长,即是,即EF的最小值是,△AEF的周长=AE+AF+EF=AB+EF,△AEF的周长的最小值为2+,答:存在,△AEF的周长的最小值为2+. (1)过点D作DP⊥BC于点P,过点A作AQ⊥BC于点Q,得到CP=BQ=AB,CP+BQ=AB=1,得出BC=2CD,由点M是BC的中点,推出CM=CD,由∠C=60°,根据等边三角形的判定即可得到答案;(2)△AEF的周长存在最小值,理由是连接AM,由ABMD是菱形,得出△MAB,△MAD和△MC′D′是等边三角形,推出∠BME=∠AMF,证出△BME≌△AMF(ASA),得出BE=AF,ME=MF,推出△EMF是等边三角形,根据MF的最小值为点M到AD的距离,即EF的最小值是,即可求出△AEF的周长.
点击显示
数学推荐
热门数学推荐